Well-timed, brief inhibition can promote spiking: postinhibitory facilitation.
نویسندگان
چکیده
Brief synaptic inhibition can overwhelm a nearly coincident suprathreshold excitatory input to preclude spike generation. Surprisingly, a brief inhibitory event that occurs in a favorable time window preceding an otherwise subthreshold excitation can facilitate spiking. Such postinhibitory facilitation (PIF) requires that the inhibition has a short (decay) time constant tauinh. The timescale ranges of tauinh and of the window (width and timing) for PIF depend on the rates of neuronal subthreshold dynamics. The mechanism for PIF is general, involving reduction by hyperpolarization of some excitability-suppressing factor that is partially recruited at rest. Here we illustrate and analyze PIF, experimentally and theoretically, using brain stem auditory neurons and a conductance-based five-variable model. In this auditory case, PIF timescales are in the sub- to few millisecond range and the primary mechanistic factor is a low-threshold potassium conductance gKLT. Competing dynamic influences create the favorable time window: hyperpolarization that moves V away from threshold and hyperexcitability resulting from reduced gKLT. A two-variable reduced model that retains the dynamics only of V and gKLT displays a similar time window. We analyze this model in the phase plane; its geometry has generic features. Further generalizing, we show that PIF behavior may occur even in a very reduced model with linear subthreshold dynamics, by using an integrate-and-fire model with an accommodating voltage-dependent threshold. Our analyses of PIF provide insights for fast inhibition's facilitatory effects in longer trains. Periodic subthreshold excitatory inputs can lead to firing, even one for one, if brief inhibitory inputs are interleaved within a range of favorable phase lags. The temporal specificity of inhibition's facilitating effect could play a role in temporal processing, in sensitivity to inhibitory and excitatory temporal patterning, in the auditory and other neural systems.
منابع مشابه
Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus.
The superior paraolivary nucleus (SPON) is a prominent structure in the auditory brainstem. In contrast to the principal superior olivary nuclei with identified roles in processing binaural sound localization cues, the role of the SPON in hearing is not well understood. A combined in vitro and in vivo approach was used to investigate the cellular properties of SPON neurons in the mouse. Patch-c...
متن کاملThreshold curve for the excitability of bidimensional spiking neurons.
We shed light on the threshold for spike initiation in two-dimensional neuron models. A threshold criterion that depends on both the membrane voltage and the recovery variable is proposed. This approach provides a simple and unified framework that accounts for numerous voltage threshold properties including adaptation, variability, and time-dependent dynamics. In addition, neural features such ...
متن کاملIntegration of cortical and pallidal inputs in the basal ganglia-recipient thalamus of singing birds.
The basal ganglia-recipient thalamus receives inhibitory inputs from the pallidum and excitatory inputs from cortex, but it is unclear how these inputs interact during behavior. We recorded simultaneously from thalamic neurons and their putative synaptically connected pallidal inputs in singing zebra finches. We find, first, that each pallidal spike produces an extremely brief (∼5 ms) pulse of ...
متن کاملA Rate-Reduced Neuron Model for Complex Spiking Behavior
We present a simple rate-reduced neuron model that captures a wide range of complex, biologically plausible, and physiologically relevant spiking behavior. This includes spike-frequency adaptation, postinhibitory rebound, phasic spiking and accommodation, first-spike latency, and inhibition-induced spiking. Furthermore, the model can mimic different neuronal filter properties. It can be used to...
متن کاملInhibition-Induced Theta Resonance in Cortical Circuits
Both circuit and single-cell properties contribute to network rhythms. In vitro, pyramidal cells exhibit theta-band membrane potential (subthreshold) resonance, but whether and how subthreshold resonance translates into spiking resonance in freely behaving animals is unknown. Here, we used optogenetic activation to trigger spiking in pyramidal cells or parvalbumin immunoreactive interneurons (P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 95 4 شماره
صفحات -
تاریخ انتشار 2006